Step of Proof: adjacent-append
11,40
postcript
pdf
Inference at
*
1
1
2
1
I
of proof for Lemma
adjacent-append
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
L1
:
T
List
5.
L2
:
T
List
6.
i
: {0..(||
L1
@
L2
|| - 1)
}
7.
x
= (
L1
@
L2
)[
i
]
8.
y
= (
L1
@
L2
)[(
i
+1)]
9.
i
< ||
L1
||
10.
(
i
< (||
L1
|| - 1))
(0 < ||
L1
||) & (0 < ||
L2
||) &
x
= last(
L1
) &
y
= hd(
L2
)
latex
by ((((RWO "select_append_front" (-4))
CollapseTHENA (Auto'))
)
CollapseTHEN (((
C
RWO "select_append_back" (-3))
CollapseTHENA (Auto'))
))
latex
C
1
:
C1:
7.
x
=
L1
[
i
]
C1:
8.
y
=
L2
[((
i
+1) - ||
L1
||)]
C1:
9.
i
< ||
L1
||
C1:
10.
(
i
< (||
L1
|| - 1))
C1:
(0 < ||
L1
||) & (0 < ||
L2
||) &
x
= last(
L1
) &
y
= hd(
L2
)
C
.
Definitions
,
P
Q
,
P
Q
,
#$n
,
l
[
i
]
,
t
T
,
x
:
A
B
(
x
)
,
Void
,
i
j
<
k
,
P
&
Q
,
False
,
P
Q
,
n
-
m
,
-
n
,
n
+
m
,
A
,
a
<
b
,
{
x
:
A
|
B
(
x
)}
,
,
type
List
,
Type
,
{
i
..
j
}
,
||
as
||
,
as
@
bs
,
i
j
,
A
B
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
s
=
t
Lemmas
select
append
front
,
iff
wf
,
rev
implies
wf
,
select
append
back
,
le
wf
,
append
wf
,
non
neg
length
,
length
append
origin